PROPOSALS FOR THE IOBC EXECUTIVE COMMITTEE
1976 - 1980

The Executive Committee of IOBC met in Rawalpindi, Pakistan, at the Session of the Commonwealth Institute of Biological control, 24 and 25 October 1976 and finalized the details of candidates who will be proposed for the Executive Committee 1979-1983 at the next General Assembly (August 1976). The candidates are:

C.P. Hutton (Past-President), F.J. Simmonds and J. Ignoffo (Vice-Presidents), G. Matten (Secretary-General, V. Dolach (Treasurer).

The Secretary-General

MEMBERSHIP FEE

Members of IOBC should request their bank to indicate their name on the Swiss Bank Corporation at Delémont, Switzerland, when deposit of the annual membership fee is made. During 1975 the IOBC treasury has received several letters which could not be credited. Often a member uses the services of a bank which is located in a different country and the name of the covering bank is therefore of little help. When the treasurer does not know the name of the payer, the journal Entomocron cannot be ordered and this situation creates misunderstandings between members and the organization.

The Secretary-General

WEST PALAEOARCTIC REGIONAL SECTION (WPRS)

Pesticides and beneficial arthropods

It is well known that the side-effect of pesticides on entomophagous (c. beneficial arthropods) has been widely investigated in the past. In spite of numerous single studies on the subject and the general recognition that pest management occurs as a consequence of the simultaneous application of predatory and parasitic arthropods, no general and official action has been taken to study toxicity of pesticides to entomophagous organisms. The situation will only improve if side-effects of pesticides will be officially tested as part of the protocol of registration. In order to do this, standardized test methods have to be accepted. The use of key entomophagous arthropods and the acknowledgement of results of such tests from other countries will facilitate this work.

Now the first step in the right direction has been done; the Biologische Bundesanstalt für Land- und Forstwirtschaft (Federal Biological Research Institute for Agriculture and Forestry) in the Federal Republic of Germany has accepted (voluntarily) part of pesticidal registration of standard tests on the effect of pesticides on 3 entomophagous insects (Trichogramma, Graupelkäfer).

Phytophthora 13. Those three parasitic Hypocreales are of economic importance and are present in permanent reservoirs. Laboratory tests evaluate initial contact toxicity and evaluate not for mortality, but for reduction of the rate of parasitization. A field test concerns the situation in an apple tree. The details of this principle of standards tests has been worked out during the past years, first in a German working party, later in a multinational working group (IOBC-WPRS). The secretariat of this working group has been continuing for an enlarged basis for a correct assessment of the total impact of pesticides as it is needed for an effective implementation of integrated pest protection. In the same time, such official tests will provide the pesticide industry with a unique chance to get acknowledged for the selectivity of their products. A symposium on this subject will be held in the XXIV International Congress of Entomology (Section Biological Control). J.M. Praus, ext. 4, Biologische Schädlingsbekämpfung, B.B.A. St. Gallen, F.R.G.

WG on Microbial control of Gypsy moth (from IOB Newsletter, 7, 1975)

The Working Group on Microbial control of the Gypsy moth, established in 1962 by the WPRS/IOBC, conducted a symposium at the International Congress of Plant Protection in Moscow. The Working Group has primarily been active in the production and use of entomopathogenic nematodes in North America and western Europe (cf. report in "Plant Protection Biology"-17(4), 1973, p. 109). Dr. L. van Veen (Brongersma, medievalist, and Dr. F. Venter (Pretoria) discussed the Working Group's intention to broaden its activities (11) to include also work on entomopathogenic fungi. The Working Group will publish an overview of all work done in this field. The Working Group will also consider if and to what extent a or on a nematode, which is currently under investigation in Russia, North Africa, Spain, Corsica, Sardegna, Yugoslavia and Poland will be stimulated in cooperation with an enlarged group (East-West) Working Group relevant particularly for countries such as Mauritania, Bulgaria, the Soviet Union. A meeting of this Working Group was planned for Bucharest, 1975 in Romania, where a common plan will be worked out to support successful virus application, as well as other types of biological control techniques and associated procedures, based on a better insight into the environmental conditions in the whole area of distribution of the pest, including non-parasite control approaches. J.M. Frant (same address as above).

TOWARDS THE ESTABLISHMENT OF AN EAST PALAEOARCTIC REGIONAL SECTION?

On the 25th July 1975, at the VIII International Congress of Plant Protection in Moscow, a presentation was held to discuss the future of EPN/IOBC. Under the chairmanship of J. M. Praus (West-Germany), delegates from Bulgaria, the German Democratic Republic, Hungary, Poland, Romania, and Czechoslovakia expressed their readiness to participate in the organization. Simultaneously translation by Congress interpreters was provided for the meeting.
WHRS Membership fee 1976

By this time all of $24 individual members as well as institutional and supporting members should have selected issues No. 1 and 2 of Entomophaga for 1976. Issues No. 3 and 4 are expected to arrive shortly. If you have not received either of the first two issues, please notify Dr. George E. Allen, University of Florida, Department of Entomology, 340 Archer Rd., Gainesville, Florida, 32611.

Due notice for 1976 memberships and applications were mailed in January. New membership dues for 1976 are as follows: individual membership without Entomophaga $18.00, individual membership with Entomophaga $20.00, institutional membership $100.00. The following is a list of institutions which in each of the categories was as follows:

- Individual membership (without Entomophaga)
 - 100
- Individual membership ($34)
 - 84
- Supporting membership
 - 1
- Institutional membership
 - 9

G. E. Allen

PACIFIC REGIONAL SECTION (PRS)

Plant hopper and tussock moth in the Solomon Islands

Studies on Cytorus opsis, a brown plant hopper (BPH) on rice in the Solomon Islands showed that a sufficient control when predator and heat can be kept in balance.

Nearly 1,000 acres of rice have been infested with maximum use of sprays. It is necessary to spray against an armoured and a leaf-eating, rearing the Cytorus opsis (Crylatyes) and BPH, so that the problem now amounts to finding alternative sprays that will not harm the Cytorus opsis (Crylatyes) has worked well in the laboratory but has not yet been tried in the field. As no application testing for varieties of rice with recommended to BPH continues, in cooperation with the International Rice Institute.

An outbreak of tussock moth (Lasca venosa) in maize in village covered more than 15 hectares. Careful monitoring of the populations led to recommendations of action as the eggs were heavily parasitized by a Trichogramma and the larvae by Apanteles. As in the rice problem, it is necessary that it be treated with a product which does not affect the parasitoids. Hymenoptera has been feeds effective against the larvae even when in the larger stages. The outbreak reported covered approximately 300 hectares, so spraying would be largely unnecessary.

J. H. Syrewy

Soil, Agriculture and Lands, Memoria, S. I.

Biological control of the Rhinoceros beetle in Samoa

The virus Rhinoceros beetle is being used in Samoa to control the Rhinoceros beetle.

Ocestes rhinoceros, a serious pest of coconut palms, because of the inescapability of breeding sites in the main Tahiti Islands, control of this pest had been difficult. In 1976 the virus was introduced into Western Samoa using artificial breeding sites.

When adults are introduced with a properly prepared inoculum of viruliferous insect eggs, the virus multiplies in the gut epithelium, lining muscles, nerves and other tissues unaffected for 20 months. Feeding stops and a white chlorotic development. The beetle becomes flying very fatigued, disintegrating the digestive tract that has become an effective antacid control method. This virus, together with the fungus Mortierella, has been shown by preliminary and practical plantations sanitation will be used in the integrated control program for rhinoceros beetle in Samoa.

(Approved by "Biological Control of the Rhinoceros Beetle in Samoa, J. Marshick Prot. Conf. on Plant Protection in Tropical and Subtropical Areas, Manila, Philippines, November 1976").

CIBC NEWS

CIBC work under USA Public Law 480 Grants

At the Commonwealth Institute of Biological Control, Pakistan Station, work on a number of projects has been carried out since 1969 with U.S.A. P.L. 480 grants. These include forest, crop and orchard pests and weeds.

At the Commonwealth Institute of Biological Control, Pakistan Station, work on a number of projects has been carried out since 1969 with U.S.A. P.L. 480 grants. These include forest, crop and orchard pests and weeds.

At the Commonwealth Institute of Biological Control, Pakistan Station, work on a number of projects has been carried out since 1969 with U.S.A. P.L. 480 grants. These include forest, crop and orchard pests and weeds.

At the Commonwealth Institute of Biological Control, Pakistan Station, work on a number of projects has been carried out since 1969 with U.S.A. P.L. 480 grants. These include forest, crop and orchard pests and weeds.

At the Commonwealth Institute of Biological Control, Pakistan Station, work on a number of projects has been carried out since 1969 with U.S.A. P.L. 480 grants. These include forest, crop and orchard pests and weeds.

At the Commonwealth Institute of Biological Control, Pakistan Station, work on a number of projects has been carried out since 1969 with U.S.A. P.L. 480 grants. These include forest, crop and orchard pests and weeds.

At the Commonwealth Institute of Biological Control, Pakistan Station, work on a number of projects has been carried out since 1969 with U.S.A. P.L. 480 grants. These include forest, crop and orchard pests and weeds.
Preliminary survey of the natural enemies of Cinara sp. (Aphididae) and of poison ivy in Florida for Bermudia

The Commonwealth Institute of Biological Control was commissioned by the Bermudia Department of Agriculture to look for natural enemies of the aphid Cinara hebean, a pest of Juniperus berberis, and of poison ivy Rhus toxicodendron. Accordingly, a reconnaissance visit was paid to Bermuda to carry out our preliminary field work and to consult local entomologists.

As no aphids were encountered on Juniperus spp., collections were made on Pinus spp. Aphids were very scarce on these last evidence of heavy parasitism was noted. Two species parasitize Praxia blakei, Asaphis hebean and Xyphoniasius fusiformis. An assessment was made of the relative number of parasitoids for identification. Further investigations during June, August, and September 1974 confirmed the preliminary report for the period 1974-1975. Approximately 35 phytophagous insects and mites R. Combz, who has worked in New Zealand on biological control for many years, has had some information, which is contained in the following. He has known this “weedy” crop in northern New Zealand for over 50 years, but cannot give exact figures. The galls do not spread and they have probably been very dependent on natural enemies. An interesting point about the galls is that the galls were not spread by the larvae and are not spread. This is a good growing season, and the first year in the New Zealand importation area to have a galls in some species. The galls in the same time beneficial galls are spread by the wind, and this is a final control strategy during these periods. Assessment of the use of these galls is not always easy, but they have certainly been very marked.

A commercial firm has estimated that in the North Island the galls on pine trees cost more than $2,000,000 each year against Mycosphaerella have in fact been used. Allowing a similar figure for the application of chemical controls there is a saving in chemical application alone of $3,000,000.

Briefly the costs of the projects have been approximately $50,000 in New Zealand and $10,000 in China to provide the original data on Apestesia rufus. In the 1973-74 season alone the estimate would have been at least $10,000 — probably more — with a further saving of similar quantum and the potential for comparable biological effects. Thus the total cost of the incentive has been a mere $25,000 / 100,000 or 190,000 per year at a 9% annual return. Even if it is accepted that it is a significant factor of 10% it is a $2,500 annual return on total expenditure as quite small compared with the total investment. However, if the total expenditure only a fifth of this cost and this is that it is an investment of 10% — this is a $25,000 annual return on total expenditure is quite small compared with the total investment. It is suggested that anyone interested in the control of M. (P.) separata or possibly would try to try another species native to such countries should contest CIBC.

F.J. Beauchamp, CIBC

US TEAM OF ENTOMOLOGISTS VISITS PEOPLE'S REPUBLIC OF CHINA

During August 1975, a team of nine U.S. entomologists visited six provinces of the People's Republic of China and held discussions with leading entomologists and entomological control specialists. The visit was arranged by the Committee on Biodiversity Control with the People's Republic of China. The team included the American Council of Learned Societies, the Social Science Research Council, and the National Academy of Sciences (U.S.A.).

Carl Heuberger of Brigham Young University was a member of this insect Control Study Group and was able to get considerable information on current biological control programs in China.

Biological control in China is receiving extensive emphasis nationally, and especially in the area of weeds and pests. Of special concern is the heavy reliance, oil, cotton, sugar cane and corn pest control, integrated control is also receiving much emphasis. The ecological and cultural control and biological control form the major basis of these programs, especially cultural controls. However, the need for better integration of biological controls with other control mechanisms is emphasized.

Biological control studies include extensive use of Trichogramma for control of certain pests of the black cotton pest, Spodoptera litura, the rice weevil, Sitophilus oryzae and grasshoppers. The rearing of beneficial insects in China is also an important part of integrated control. The rearing of beneficial insects on a large scale, and their release into the environment has been a major part of the integrated control programs.
ASIAN SIDE EFFECTS

In Egypt, the most severe risk comes from the spread of rice blackhead and rice blast, which can cause significant yield losses. The most recent data shows that the pest is spreading across the Nile Delta, threatening the country's food security.

MEETINGS

The first EUCARIA/IOBC meeting on insect resistance in plants took place in Wageningen, the Netherlands for 1st December, 1979. Objectives of the meeting were:

- To assess the extent of the problem
- To identify the main factors influencing it
- To develop strategies to combat the problem

The meeting was organized by the EUCARIA/IOBC and held in Wageningen, the Netherlands.

The second meeting took place in Mexico City, Mexico, on 18th-22nd January, 1980.

The third meeting was held in Bahrain, Bahrain, in 1981.

The editors wish to thank all those who have contributed to this publication. Thanks are due to the many people who provided valuable assistance. The editors wish to express their appreciation to all those who contributed to this publication.

Editors and coordinators of this issue: C.B. Hoffken, V. Dechavassine, P.J. Sillence.