The leaf-feeding beetle is currently being mass-reared and redistributed into areas of Pakistan where it has been observed. This beetle is effective at controlling the weeds at high altitudes in Nepal. However, the effectiveness of the beetle at the lower altitudes remains to be seen. In the past, the beetle has been observed in Ethiopia and up to 40% yield losses in various crops in India. CABI has recently increased its capacity to control the weeds.

Under this programme, CABI Central and Western Asia (CWA) in Rawalpindi, Pakistan, are targeting the weeds in the fallow and abandoned lands of lowland and midhills of Nepal. It is dominant mainly in the urban areas of Nepal. The beetles have been introduced and are expected to control the weeds effectively.

The beetle is responsible for controlling the weeds in 80% of fields. For the first time, this beetle has been observed in Nepal. It is currently being mass-reared and redistributed into areas of Pakistan where it has been observed. The beetle is effective at controlling the weeds at high altitudes in Nepal. However, the effectiveness of the beetle at the lower altitudes remains to be seen.

In the past, the beetle has been observed in Ethiopia and up to 40% yield losses in various crops in India. CABI has recently increased its capacity to control the weeds. Under this programme, CABI Central and Western Asia (CWA) in Rawalpindi, Pakistan, are targeting the weeds in the fallow and abandoned lands of lowland and midhills of Nepal. It is dominant mainly in the urban areas of Nepal. The Beetles have been introduced and are expected to control the weeds effectively.
A Biological control training course was implemented from 27-29 March 2019 in Chiclayo, Peru, under the support of the International Organization for Biological and Integrated Control (IOBC-CAAS). This workshop was organized by Institute of Plant Protection, Chinese Academy of Agricultural Sciences (IPPC-APRS).

The training focused on the use of predatory mites as biological control agents. Participants were encouraged to submit their best work to BioControl!

Congratulations to our Editor in Chief Eric Wajnberg and the wonderful Editorial Team on this milestone.

The new Impact Factor is 2.191.

The intention of the Cactus Working Group is promoting the use of biological control to reduce the serious environmental threat caused by cacti in Namibia, but biological control can provide an environmentally friendly alternative.

The IOBC Cactus Working Group would like to invite those interested in biological control of cactus to join the working group. Contact details are available on the website.

On the fourth day, participants were taken into the field to observe biological control agents in action, including the control of Mikania micrantha.

Participants of the Third International Workshop of the IOBC Global Working Group on Biological Control and Management of Parthenium hysterophorus were able to see the control of this invasive weed in Bengaluru, India.

Biocontrol programmes on parthenium weed have been ongoing for some time in Australia, India, South Africa, and the Cook Islands. Other countries are at various earlier stages of implementing biocontrol to manage parthenium weed but are encouraged to quantify the spread and economic, social, and health impacts of the weed and its management.

The Third International Workshop of the IOBC Global Working Group on Biological Control and Management of Parthenium hysterophorus was held in Bengaluru, India during the Third International Workshop of the IOBC Global Working Group on Biological Control and Management of Parthenium hysterophorus.

Some of the papers in the special collection also got highlighted further:

- Juan’s paper was picked up by Scientific American’s “60 second science” podcast. You can listen here.
- Dr. Guy Smagghe is a Professor at the University of Ghent in the Faculty of Bioscience Engineering and has contributed greatly to the development of apivectoring technology.
- Dr. Christina Mogren from University of Hawaii helping to set up a BioBest Flying Doctor® hive.
- Charlotte Coates from Carleton University is doing a PhD on alternative pollinators of Lantana camara for which Ostrinia furnacalis is a natural enemy.
- Dr. Roberto Cafagna has contributed significantly to the development of apivectoring project on greenhouse strawberry crops in Ontario.
- Dr. Charlotte Coates from Carleton University is doing a PhD on alternative pollinators of Lantana camara for which Ostrinia furnacalis is a natural enemy.
- Dr. Charlie Inouye from University of Hawaii is doing a PhD on alternative pollinators of Lantana camara for which Ostrinia furnacalis is a natural enemy.
- Dr. Roberto Cafagna from Carleton University is doing a PhD on alternative pollinators of Lantana camara for which Ostrinia furnacalis is a natural enemy.

The audience during the IOBC meeting was able to see the collection of micro and macro fungal specimens isolated from the garden in Bengaluru, India.

Malaysian Agricultural Research and Development Institute (MARDI). There were numerous talks on the emerging pest Ostrinia furnacalis and its management in Malaysia.